Abscission of Azolla branches induced by ethylene and sodium azide.
نویسندگان
چکیده
Treatment with ethylene accelerated the abscission of branches of Azolla filiculoides plants. An Azolla plantlet treated with ethylene at 10 microl liter(-1) divided into 4-5 fragments after a lag period of 6-8 h. Ethylene-induced abscission was effectively inhibited by cycloheximide and was associated with an increase in the activities of cellulase and polygalacturonase. At the fracture surface abscised after treatment with ethylene, dissolution of the primary walls of the abscission zone cells was apparent. However, the middle lamella between abscission zone cells was still present. Immunoelectron microscopy using anti-unesterified pectin (JIM5) and anti-methylesterified pectin (JIM7) monoclonal antibodies revealed the presence of both JIM5 and JIM7 epitopes in the wall between abscission zone cells of branches before abscission occurred. In the middle lamella remaining after ethylene-induced abscission, only JIM7 epitopes were observed. The features of ethylene-induced abscission described herein were different from those of the rapid abscission induced by sodium azide, which implies that they are mediated by different mechanisms. The possible mechanisms are discussed.
منابع مشابه
Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla.
Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a r...
متن کاملBimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM N...
متن کاملPolyamine-Induced Rapid Root Abscission in Azolla pinnata
Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature w...
متن کاملDeferral of senescence and abscission by chemical inhibition of ethylene synthesis and action in bean explants.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO(3), and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, a...
متن کاملIdentification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones.
A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 41 12 شماره
صفحات -
تاریخ انتشار 2000